This document provides Python-specific best practices and examples for implementing MCP servers using the MCP Python SDK. It covers server setup, tool registration patterns, input validation with Pydantic, error handling, and complete working examples.
from mcp.server.fastmcp import FastMCP
from pydantic import BaseModel, Field, field_validator, ConfigDict
from typing import Optional, List, Dict, Any
from enum import Enum
import httpx
mcp = FastMCP("service_mcp")
@mcp.tool(name="tool_name", annotations={...})
async def tool_function(params: InputModel) -> str:
# Implementation
pass
The official MCP Python SDK provides FastMCP, a high-level framework for building MCP servers. It provides:
@mcp.toolFor complete SDK documentation, use WebFetch to load:
https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md
Python MCP servers must follow this naming pattern:
{service}_mcp (lowercase with underscores)github_mcp, jira_mcp, stripe_mcpThe name should be:
Use snake_case for tool names (e.g., "search_users", "create_project", "get_channel_info") with clear, action-oriented names.
Avoid Naming Conflicts: Include the service context to prevent overlaps:
Tools are defined using the @mcp.tool decorator with Pydantic models for input validation:
from pydantic import BaseModel, Field, ConfigDict
from mcp.server.fastmcp import FastMCP
# Initialize the MCP server
mcp = FastMCP("example_mcp")
# Define Pydantic model for input validation
class ServiceToolInput(BaseModel):
'''Input model for service tool operation.'''
model_config = ConfigDict(
str_strip_whitespace=True, # Auto-strip whitespace from strings
validate_assignment=True, # Validate on assignment
extra='forbid' # Forbid extra fields
)
param1: str = Field(..., description="First parameter description (e.g., 'user123', 'project-abc')", min_length=1, max_length=100)
param2: Optional[int] = Field(default=None, description="Optional integer parameter with constraints", ge=0, le=1000)
tags: Optional[List[str]] = Field(default_factory=list, description="List of tags to apply", max_items=10)
@mcp.tool(
name="service_tool_name",
annotations={
"title": "Human-Readable Tool Title",
"readOnlyHint": True, # Tool does not modify environment
"destructiveHint": False, # Tool does not perform destructive operations
"idempotentHint": True, # Repeated calls have no additional effect
"openWorldHint": False # Tool does not interact with external entities
}
)
async def service_tool_name(params: ServiceToolInput) -> str:
'''Tool description automatically becomes the 'description' field.
This tool performs a specific operation on the service. It validates all inputs
using the ServiceToolInput Pydantic model before processing.
Args:
params (ServiceToolInput): Validated input parameters containing:
- param1 (str): First parameter description
- param2 (Optional[int]): Optional parameter with default
- tags (Optional[List[str]]): List of tags
Returns:
str: JSON-formatted response containing operation results
'''
# Implementation here
pass
model_config instead of nested Config classfield_validator instead of deprecated validatormodel_dump() instead of deprecated dict()@classmethod decoratorType hints are required for validator methods
from pydantic import BaseModel, Field, field_validator, ConfigDict
class CreateUserInput(BaseModel):
model_config = ConfigDict(
str_strip_whitespace=True,
validate_assignment=True
)
name: str = Field(..., description="User's full name", min_length=1, max_length=100)
email: str = Field(..., description="User's email address", pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$')
age: int = Field(..., description="User's age", ge=0, le=150)
@field_validator('email')
@classmethod
def validate_email(cls, v: str) -> str:
if not v.strip():
raise ValueError("Email cannot be empty")
return v.lower()
Support multiple output formats for flexibility:
from enum import Enum
class ResponseFormat(str, Enum):
'''Output format for tool responses.'''
MARKDOWN = "markdown"
JSON = "json"
class UserSearchInput(BaseModel):
query: str = Field(..., description="Search query")
response_format: ResponseFormat = Field(
default=ResponseFormat.MARKDOWN,
description="Output format: 'markdown' for human-readable or 'json' for machine-readable"
)
Markdown format:
JSON format:
For tools that list resources:
class ListInput(BaseModel):
limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100)
offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0)
async def list_items(params: ListInput) -> str:
# Make API request with pagination
data = await api_request(limit=params.limit, offset=params.offset)
# Return pagination info
response = {
"total": data["total"],
"count": len(data["items"]),
"offset": params.offset,
"items": data["items"],
"has_more": data["total"] > params.offset + len(data["items"]),
"next_offset": params.offset + len(data["items"]) if data["total"] > params.offset + len(data["items"]) else None
}
return json.dumps(response, indent=2)
Provide clear, actionable error messages:
def _handle_api_error(e: Exception) -> str:
'''Consistent error formatting across all tools.'''
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == 404:
return "Error: Resource not found. Please check the ID is correct."
elif e.response.status_code == 403:
return "Error: Permission denied. You don't have access to this resource."
elif e.response.status_code == 429:
return "Error: Rate limit exceeded. Please wait before making more requests."
return f"Error: API request failed with status {e.response.status_code}"
elif isinstance(e, httpx.TimeoutException):
return "Error: Request timed out. Please try again."
return f"Error: Unexpected error occurred: {type(e).__name__}"
Extract common functionality into reusable functions:
# Shared API request function
async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict:
'''Reusable function for all API calls.'''
async with httpx.AsyncClient() as client:
response = await client.request(
method,
f"{API_BASE_URL}/{endpoint}",
timeout=30.0,
**kwargs
)
response.raise_for_status()
return response.json()
Always use async/await for network requests and I/O operations:
# Good: Async network request
async def fetch_data(resource_id: str) -> dict:
async with httpx.AsyncClient() as client:
response = await client.get(f"{API_URL}/resource/{resource_id}")
response.raise_for_status()
return response.json()
# Bad: Synchronous request
def fetch_data(resource_id: str) -> dict:
response = requests.get(f"{API_URL}/resource/{resource_id}") # Blocks
return response.json()
Use type hints throughout:
from typing import Optional, List, Dict, Any
async def get_user(user_id: str) -> Dict[str, Any]:
data = await fetch_user(user_id)
return {"id": data["id"], "name": data["name"]}
Every tool must have comprehensive docstrings with explicit type information:
async def search_users(params: UserSearchInput) -> str:
'''
Search for users in the Example system by name, email, or team.
This tool searches across all user profiles in the Example platform,
supporting partial matches and various search filters. It does NOT
create or modify users, only searches existing ones.
Args:
params (UserSearchInput): Validated input parameters containing:
- query (str): Search string to match against names/emails (e.g., "john", "@example.com", "team:marketing")
- limit (Optional[int]): Maximum results to return, between 1-100 (default: 20)
- offset (Optional[int]): Number of results to skip for pagination (default: 0)
Returns:
str: JSON-formatted string containing search results with the following schema:
Success response:
{
"total": int, # Total number of matches found
"count": int, # Number of results in this response
"offset": int, # Current pagination offset
"users": [
{
"id": str, # User ID (e.g., "U123456789")
"name": str, # Full name (e.g., "John Doe")
"email": str, # Email address (e.g., "john@example.com")
"team": str # Team name (e.g., "Marketing") - optional
}
]
}
Error response:
"Error: <error message>" or "No users found matching '<query>'"
Examples:
- Use when: "Find all marketing team members" -> params with query="team:marketing"
- Use when: "Search for John's account" -> params with query="john"
- Don't use when: You need to create a user (use example_create_user instead)
- Don't use when: You have a user ID and need full details (use example_get_user instead)
Error Handling:
- Input validation errors are handled by Pydantic model
- Returns "Error: Rate limit exceeded" if too many requests (429 status)
- Returns "Error: Invalid API authentication" if API key is invalid (401 status)
- Returns formatted list of results or "No users found matching 'query'"
'''
See below for a complete Python MCP server example:
#!/usr/bin/env python3
'''
MCP Server for Example Service.
This server provides tools to interact with Example API, including user search,
project management, and data export capabilities.
'''
from typing import Optional, List, Dict, Any
from enum import Enum
import httpx
from pydantic import BaseModel, Field, field_validator, ConfigDict
from mcp.server.fastmcp import FastMCP
# Initialize the MCP server
mcp = FastMCP("example_mcp")
# Constants
API_BASE_URL = "https://api.example.com/v1"
# Enums
class ResponseFormat(str, Enum):
'''Output format for tool responses.'''
MARKDOWN = "markdown"
JSON = "json"
# Pydantic Models for Input Validation
class UserSearchInput(BaseModel):
'''Input model for user search operations.'''
model_config = ConfigDict(
str_strip_whitespace=True,
validate_assignment=True
)
query: str = Field(..., description="Search string to match against names/emails", min_length=2, max_length=200)
limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100)
offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0)
response_format: ResponseFormat = Field(default=ResponseFormat.MARKDOWN, description="Output format")
@field_validator('query')
@classmethod
def validate_query(cls, v: str) -> str:
if not v.strip():
raise ValueError("Query cannot be empty or whitespace only")
return v.strip()
# Shared utility functions
async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict:
'''Reusable function for all API calls.'''
async with httpx.AsyncClient() as client:
response = await client.request(
method,
f"{API_BASE_URL}/{endpoint}",
timeout=30.0,
**kwargs
)
response.raise_for_status()
return response.json()
def _handle_api_error(e: Exception) -> str:
'''Consistent error formatting across all tools.'''
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == 404:
return "Error: Resource not found. Please check the ID is correct."
elif e.response.status_code == 403:
return "Error: Permission denied. You don't have access to this resource."
elif e.response.status_code == 429:
return "Error: Rate limit exceeded. Please wait before making more requests."
return f"Error: API request failed with status {e.response.status_code}"
elif isinstance(e, httpx.TimeoutException):
return "Error: Request timed out. Please try again."
return f"Error: Unexpected error occurred: {type(e).__name__}"
# Tool definitions
@mcp.tool(
name="example_search_users",
annotations={
"title": "Search Example Users",
"readOnlyHint": True,
"destructiveHint": False,
"idempotentHint": True,
"openWorldHint": True
}
)
async def example_search_users(params: UserSearchInput) -> str:
'''Search for users in the Example system by name, email, or team.
[Full docstring as shown above]
'''
try:
# Make API request using validated parameters
data = await _make_api_request(
"users/search",
params={
"q": params.query,
"limit": params.limit,
"offset": params.offset
}
)
users = data.get("users", [])
total = data.get("total", 0)
if not users:
return f"No users found matching '{params.query}'"
# Format response based on requested format
if params.response_format == ResponseFormat.MARKDOWN:
lines = [f"# User Search Results: '{params.query}'", ""]
lines.append(f"Found {total} users (showing {len(users)})")
lines.append("")
for user in users:
lines.append(f"## {user['name']} ({user['id']})")
lines.append(f"- **Email**: {user['email']}")
if user.get('team'):
lines.append(f"- **Team**: {user['team']}")
lines.append("")
return "\n".join(lines)
else:
# Machine-readable JSON format
import json
response = {
"total": total,
"count": len(users),
"offset": params.offset,
"users": users
}
return json.dumps(response, indent=2)
except Exception as e:
return _handle_api_error(e)
if __name__ == "__main__":
mcp.run()
FastMCP can automatically inject a Context parameter into tools for advanced capabilities like logging, progress reporting, resource reading, and user interaction:
from mcp.server.fastmcp import FastMCP, Context
mcp = FastMCP("example_mcp")
@mcp.tool()
async def advanced_search(query: str, ctx: Context) -> str:
'''Advanced tool with context access for logging and progress.'''
# Report progress for long operations
await ctx.report_progress(0.25, "Starting search...")
# Log information for debugging
await ctx.log_info("Processing query", {"query": query, "timestamp": datetime.now()})
# Perform search
results = await search_api(query)
await ctx.report_progress(0.75, "Formatting results...")
# Access server configuration
server_name = ctx.fastmcp.name
return format_results(results)
@mcp.tool()
async def interactive_tool(resource_id: str, ctx: Context) -> str:
'''Tool that can request additional input from users.'''
# Request sensitive information when needed
api_key = await ctx.elicit(
prompt="Please provide your API key:",
input_type="password"
)
# Use the provided key
return await api_call(resource_id, api_key)
Context capabilities:
ctx.report_progress(progress, message) - Report progress for long operationsctx.log_info(message, data) / ctx.log_error() / ctx.log_debug() - Loggingctx.elicit(prompt, input_type) - Request input from usersctx.fastmcp.name - Access server configurationctx.read_resource(uri) - Read MCP resourcesExpose data as resources for efficient, template-based access:
@mcp.resource("file://documents/{name}")
async def get_document(name: str) -> str:
'''Expose documents as MCP resources.
Resources are useful for static or semi-static data that doesn't
require complex parameters. They use URI templates for flexible access.
'''
document_path = f"./docs/{name}"
with open(document_path, "r") as f:
return f.read()
@mcp.resource("config://settings/{key}")
async def get_setting(key: str, ctx: Context) -> str:
'''Expose configuration as resources with context.'''
settings = await load_settings()
return json.dumps(settings.get(key, {}))
When to use Resources vs Tools:
FastMCP supports multiple return types beyond strings:
from typing import TypedDict
from dataclasses import dataclass
from pydantic import BaseModel
# TypedDict for structured returns
class UserData(TypedDict):
id: str
name: str
email: str
@mcp.tool()
async def get_user_typed(user_id: str) -> UserData:
'''Returns structured data - FastMCP handles serialization.'''
return {"id": user_id, "name": "John Doe", "email": "john@example.com"}
# Pydantic models for complex validation
class DetailedUser(BaseModel):
id: str
name: str
email: str
created_at: datetime
metadata: Dict[str, Any]
@mcp.tool()
async def get_user_detailed(user_id: str) -> DetailedUser:
'''Returns Pydantic model - automatically generates schema.'''
user = await fetch_user(user_id)
return DetailedUser(**user)
Initialize resources that persist across requests:
from contextlib import asynccontextmanager
@asynccontextmanager
async def app_lifespan():
'''Manage resources that live for the server's lifetime.'''
# Initialize connections, load config, etc.
db = await connect_to_database()
config = load_configuration()
# Make available to all tools
yield {"db": db, "config": config}
# Cleanup on shutdown
await db.close()
mcp = FastMCP("example_mcp", lifespan=app_lifespan)
@mcp.tool()
async def query_data(query: str, ctx: Context) -> str:
'''Access lifespan resources through context.'''
db = ctx.request_context.lifespan_state["db"]
results = await db.query(query)
return format_results(results)
FastMCP supports two main transport mechanisms:
# stdio transport (for local tools) - default
if __name__ == "__main__":
mcp.run()
# Streamable HTTP transport (for remote servers)
if __name__ == "__main__":
mcp.run(transport="streamable_http", port=8000)
Transport selection:
Your implementation MUST prioritize composability and code reuse:
Extract Common Functionality:
Avoid Duplication:
async with for resources that need cleanupBefore finalizing your Python MCP server implementation, ensure:
{service}_mcpasync defpython your_server.py --help